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Supplementary material for “Doubly Debiased Lasso:
High-Dimensional Inference under Hidden Confounding”

In Appendix A, we present the proof of Theorem 1 and important intermediary results for
establishing Theorem 1. In Appendix B, we present the proof of Proposition 1, which relies on
a finite-sample analysis of the factor model. Additional Proofs are presented in Appendix C.

APPENDIX A: INTERMEDIARY RESULTS AND PROOF OF THEOREM 1

In the following, we list three intermediary results in Sections A.1 to A.3 as the key
components of proving our main result Theorem 1 and then provide the proof of Theorem 1 in
Section A.4. We verify the condition (A2) in Section A.5. All our theoretical derivations are
done for the Hidden Confounding Model (2), but they additionally hold more generally for
the perturbed linear model (3).

A.1. Valid spectral transformations. The first intermediary result is on the properties
of the spectral transformation we use. We will show that the limiting distributlon in Theorem
1 holds generally for the estimator (10) using any spectral transformations P) and Q that
satisfy the following:

(P1) Spectral Transformation Property. PU) = U(X_;)S(X_;)U(X_;)T and Q =
U(X)S(X)U(X)T satisty

1 4
2Py 12 < p Z 2 < p
(30) ~|[P X_J||2Nmax{1,n} and ||QX||2 max {1,% |
(31) (PO = [Su(X-;)* Zm  and Tr(Q4):Z[SH(X)]4A>Jm.
=1 =1

with m = min{n,p — 1}.

The first requirement means that P ) and Q need to shrink the leading singular values of X _;
and X to a sufficiently small level, respectively. On the other hand, the second requirement
says that the overall shrinkage of all singular values together is not too big.

For the proof of Theorem 1 and its intermediate results, we extensively use that our spectral
transformations satisfy the property (P1). Therefore, we first need to show that the Trim
transform P defined in (14) and Q defined in (15) satisfy the property (P1). Since S;; =1
for | > | pm |, we have that at least | (1 — p)m| diagonal elements of S are equal to 1, which
immediately gives us (31) for Q whenever p < 1. Similarly, (31) for PU) holds for any

€ (0,1). However, in order to show the condition (30), we need to better understand the
behaviour of the singular values of the random matrix X.

PROPOSITION 3. Suppose E; . € RP is a sub-Gaussian random vector and Amax(X5) <
C, for some positive constant C > 0, then with probability larger than 1 — exp(—cn),

)‘qul (%XTX) S) max{l,p/n},

for some positive constant ¢ > 0.

The above proposition is proved in the Section C.2 by applying the Weyl’s inequality. This
now allows us to conclude that the Trim transform satisfies the property (P1):

COROLLARY 2. Let PY) and Q be the spectral transformation matrices obtained by
applying the Trim transformation (14) and (15), respectively. Suppose that the conditions of
Proposition 3 hold and that min{p, p;} > (¢ +1)/min{n,p — 1} and max{p, p;} < 1. Then
the Trim transformations PY) and Q satisfy (P1).
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A.2. Approximate sparsity and perturbation size. The essential step of bias correction
is to decouple the correlation between the variable of interest X ; and other covariates
X1,-5 € RP~!. In order to get an informative projection direction P(j)Zj, one needs to
estimate the best linear approximation vector v = [E(X1,—; X{ ;)] 'E(X;, —;X1,;) € RP™!
well. Recall that the results for the standard Debiased Lasso [56] are based on the fact that the
sparsity of the precision matrix E)}l gives sparsity of -, thus justifying the estimation accuracy
of the Lasso regression of X ; on X7 _;. However, even though the assumption (A1) ensures
the sparsity of the precision matrix of the unconfounded part E, v will not be sparse, since the
confounding variables H introduce additional correlations between the covariates X .

Recall the definitions

Nij = X@j — X?rij’}/ and Vij= Ei’j — ETfj’)/E,

1y 2y

where v* = [E(Ey ;BT )] 'E(E1 ;B ;).

The following Lemma 1 shows that in the presence of confounding variables, the vector
can be decomposed into a main sparse component v~ and an additional small perturbation
vector v, The proof of the following Lemma is presented in Section C.3.

LEMMA 1. Suppose that the conditions (Al) and (A2) hold, then the vector v =
[E(le_leT’_j)]flE(XL_jXLj) defined as the minimizer of E(X1 ; — X1T7_jfy’)2, can be
decomposed as v = ~F + 4, where vF = [E(E17,jEir7_j)]_1IEE1,jE1,,j is a sparse vector
with at most s non-zero components and the approximation error v** satisfies

Col\(T_;)| Va(logp)'/*

32 All, < Bt LLAA Sl AR | /T N PR

Furthermore, the difference 0; j = n; j — v; ; satisfies

= 2 P3  gllogp)'?
YOI EAN(T) Y14 A2(Ty)

(33) Var(&iyj)

The main component 7 is fully determined by the covariance structure of E; .. From the
block matrix inverse formula, we get that v* is proportional to () j—j € RP~1 and therefore
sparse with at most s non-zero components. Since the additional component v converges to
zero as in (32), the regression vector -y is approximately sparse.

In a similar fashion, we will show that the perturbation b in (3), which is induced by the
confounding variables, is of a small order of magnitude as well.

LEMMA 2. Suppose that the conditions (A1) and (A2) hold, then

(34) |b]| < Q(logp)1/2 Hb”2 < ﬂ(logp)lﬂl

T+ A2(0) ()
and
_ q(logp)!/?
(35) joc — e = o7 (I = W) 0| S 6 gy

The above lemma also shows that the variance of the error ¢; in (3) is close to that of the
random error e;. The proof of the above lemma is presented in Section C.4.
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A.3. Error rates of Bim't and 4. In order to show the asymptotic normality of the
proposed Doubly Debiased Lasso estimator (10), we need that the estimators Emit and 7y
estimate the target values [ and v well. In the following proposition, we show that the estimator
~ described in (9) accurately estimates v with a high probability. The proof of Proposition 4 is
presented in Section C.5.

PROPOSITION 4. Suppose that the conditions (A1) — (A4) hold. If the spectral trans-
formation PU) satisfies (P1) and the tuning parameter \; in (9) is chosen as \j >

Ao lo7gl P /%, for some positive constant A > 0, then with probability larger than

1—e-p'=elA/C)* _oxp(—cn) — (logp)~Y/2 for some positive constant ¢ > 0, the estimator
~ proposed in (9) satisfies
. . M? 1 |POX_i~nA2
66 =l S IWoy G =) S e, 4 PP
T Aj n
. M 1 |POX_i~v43
) =7l S v, + AP
Tx )\j n
L 56 ~ M IPDX_ 722
38 S PDX (A= AEY, < 2 SeN, o WA T2
3 IPOX G =Pl S vy + 1 2T,

where W € RP*P as a diagonal matrix with diagonal entries as Wy = |PU X ||a/+/n for
1 <1< p, 7 >0 is the lower bound for the restricted eigenvalue defined in (22) and M is the
sub-Gaussian norm for components of X; , as defined in Assumption (A3).

Throughout our analysis, we shall choose A; as

[logp | qlogp
3 A< Ao
( 9) ] U] n + 1+)\g(\1]7])7

though Proposition 4 shows that the results also hold for a larger ;. Furthermore, we combine
(30) and (32) and establish

LG P\ gvlogp
40 S PDX_ A2 < {1,f}. .
In addition, we show an analogous result that the initial spectral deconfounding estimator
B proposed in (16) accurately estimates 3 with a high probability:

PROPOSITION 5.  Suppose that the conditions (A1) — (A4) hold. If the spectral transfor-

mation Q satisfies (P1) and the tuning parameter X in (16) is chosen as A\ > Ao, lo% +

lj’rl/\oﬁfy), for some positive constant A > 0, then with probability larger than 1 — e -
q

1—c(A/Ch)?

p — exp(—cn) — (logp)~ Y2 for some positive constant ¢ > 0, the estimator pimit
proposed in (16) satisfies

Ty n

|QXDl|3

n

—~ . M 1
(42) ||5th_ﬁ||2 < ?\/%)\"‘X
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1 Finit M QX2
(43) WIIQX(B —6)||2§T*\/%/\+ N

where W € RP*? as a diagonal matrix with diagonal entries as AW/l,l = [|QX. 1[l2/+/n for
1 <1< p, 7« >0 is the lower bound for the restricted eigenvalue defined in (21) and M is the
sub-Gaussian norm for components of X; , as defined in Assumption (A3)..

This extends the results in [12], where only the rate of convergence of |37 — 3|y has
been established, but not of |3 — 3|5 and ﬁ” QX (™ — B)||2 and furthermore, the

assumption (A2) is weaker than the assumption \,(¥) 2 ,/p required in Theorem 1 of [12].
The proof of Proposition 5 is presented in Section C.6. We shall choose

logp qlogp
A=< A e )
"N T T em

though Proposition 5 shows that the results also hold for a larger \. Furthermore, similar to
(40), we combine (30) and (34) and establish

qv/logp

Ag ()
As a remark, if we further assume the error ¢; in the model (3) to be independent of Xj; ., then
we can take A = Ao¢/log p/n and establish a slightly better rate of convergence.

1 9 p
_ < =
(44) nHQXbHQNmaX{l,n}

A.4. Proof of Theorem 1. We write

GRS A VZI(PV)Z; - 02
T (Z](PU))2X,)? T ZJ(PU)X,;

Note that the following limiting result (50) shows that ZjT (P(j ) )2X; converges to a positive
value in probability. From the equation (11), we have the following expression

1 - 1 (PO Z)Tple
45 (B — B:) = 4 ‘ B. 4B
where B and By, are the (scaled) bias terms defined as
ZT(PUN2X_(Bimit — B_ ZTPDV2XD
Bg = J( ) i( J B-j) and By — ]( ) '
\/ZJ(P(j))4Zj o2 \/Zj'!'('p(j))4zj 02

We decompose

1 (PUWZ)TPUe 1 (PWZ;)TPUe 1 (PUZ)TPUIA
VV (PO ZH)TPOX;  JV (PODZ)TPOX,  V (PWZ)TPUWX;
with A; =¢TH; . — bT.X; . for 1 <i <n. Since e; is Gaussian and independent of X; . and
Z; is a function of X, we establish

1 (P(j)Zj)TP(j)e

46 . . X ~N(0,1).
(46) \/V(P(J)Zj)T’P(J)Xj’ (0,1)
It follows from Lemma 2 that
LElAIZ CEIAL = 67 (I — gn=lgT) o < _dVIosP_
47 nE||A”2—E|Az| =T (I, — U UT) § < T+ A2(0)
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By Cauchy inequality, we have

1

1 (PO zNTPUA
PoZPR ) < Ll

VV (P(j)Zj)TP(j)Xj

Combined with (47), we establish that, with probability larger than 1 — (log p)~'/2,

48) 1 (PUZ)TPUIA < [ nqlogp
VV (PDZ)TPOX; |~ \ 1+ A2(0)

If )\3(\11) > max{1,gnlogp}, we combine (46) and (48) and establish

1 (p(j)Zj)Tp(j)6
VV (PO Z)TPUIX;
We establish in the following lemma that B;, and Bg converges to 0 in probability under
certain model conditions. The proof of this lemma is presented in Section C.7. The proof

relies on our established intermediary results: Corollary 2, Lemmas 1 and 2, and Propositions
4 and 5.

(49) 4 N(0,1).

LEMMA 3. Suppose that the conditions of Theorem 1 hold. Then we have
(PUZ)TPUX;

(50) A 51
TI‘[(P(]))Q]O'JZ
ZT(p(j))4zj

(51) A 21
TI‘[(P(]))4]O']2

(52) Bz %0  By2o.

By the decomposition (45) together with (49) and (52), we establish the limiting distribution
in (24). The asymptotic expression of the variance V in (25) follows from (50) and (51).

A.5. Verification of Assumption (A2). In the following, we verify the condition (A2)
for a general class of models, whose proof can be found in Section C.8.

LEMMA 4. Suppose that {¥.;}1<i<, are generated as i.i.d. q-dimensional sub-Gaussian
random vectors with mean zero and covariance Xy € R7*% If ¢ < p, Aax(Zw) /Amin(Zw) <
C and ||¢|| o/ Amin(Xw) < C for some positive constant C > 0, then with probability larger
than 1 — (log p)?¢, we have

(53) Ag(0) 2 2g(—j) 2 VPV Amin(Ew)

4 max{[[U(Qg). ;2 [[¥;ll2, [V (2r)—jjll2, 19]l2} SV Amax(Ew) - Vg(logp),

where ¢ > 0 is a positive constant.

The conclusion of Lemma 4 can be generalized to hold if a fixed proportion of the p
columns of W are i.i.d. sub-Gaussian in RY. This generalized result is stated in the following
lemma, whose proof is presented in Section C.9:
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LEMMA 5. Suppose that there exists a set A C {1,2,...,p} such that {¥.;}ca are
generated as i.i.d sub-Gaussian random vector with mean zero and covariance g € R4
and {V.;}ic - are generated as independent q-dimensional sub-Gaussian random vectors
with sub-Gaussian norm Cy. If max{C1, Amax(Z9) } / Amin (Zw) < C, [|¥]|co/Amin (Xw) < C
and max{C1, Amax(Xw)} < C for some positive constant C' > 0 and | A| satisfies

(55)  |A>q and |A|>max {\/ 2 (logp)*", v/gqnlogp. q3/2(10gp)3/4} :
then the assumption (A2) holds with probability larger than 1 — (log p)*.

APPENDIX B: PROOF OF PROPOSITION 1
We express the hidden confounding model as
(56) XnXp:DnXp+EnXp With anp :Han\Iqup'

For a given ¢, a natural way to estimate ¥ and H is to solve the optimization problem

. 2 . . .
arg min g egnxq yeraxr || X — HY||%, where || - || 7 denotes the matrix Frobenius norm. Since
the solution of this optimization problem is not unique, we introduce an additional constraint
HTH /n =1, for the parameter identification. Then the minimizer is defined as

(H,¥) = arg min | X — H|%
HER*a WeRaxr HTH/n=I,
= arg min —2Tr(YTHTX) +nTr(VTV).

HERn*a,WeRaxr HTH/n=1,
We compute the derivative of —2Tr(UTHTX) 4+ nTr(¥TW¥) with respect to ¥ and set it to be
zero. Then we obtain the solution

1 ~ ~ ~
(57) —H'X =V with H= argmax Tr(HTXXTH).
n HeRnxa HTH/n=I,

That is, the columns of H € R™* are \/n times the first g eigenvectors, corresponding to the
top ¢ eigenvalues of X XT € R™*". Then the PCA adjusted covariates are defined as

XPCA—X_D with D=HU.
That is, we remove from X the eigen-decomposition corresponding to the top ¢ eigenvalues,
which is denoted as D. Define R = D — D. Then we have X'©A = R + F and
1
n

We further have

- - 1 1 1 1
(XPOMTXPCA _yp = (nETE - 2,;) + - RTE+—ETR+ —R'R.

. 1 = =
min T <(XPCA)TXPCA —Yp |w
lwre [t SCM-[lwr [l1,]|wl[la=1 n

1
(58) > min wT <ETE — EE> w
lwre |l SCM:[|wr |y, [|w]l2=1 n

2
VTERTEw —

1
— max max wT—RTRw.
lwrelli SCM-|lwr |1, llwll2=1 7 lwrel1 <CM-|lwr][1,[|wll:=1 N

In the following, we shall control the three terms on the right-hand-side of (58).
Note that Theorem 1.6 in [66] (with kg in this theorem taken as C'M ) implies that, if

n> Mleogp
~ n
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then with probability larger than 1 — p~¢ for some positive constant ¢ > 0,

wT%ETEw
max —r 1/ <0.1.
llwre i SCM:|lwr|l1,]|w|l2=1 wTXpw

That is, there exists a positive constant C’ > 0 such that

1
(59) min WI—ETEw>0.9  Apin(ZR),
lwrel1 KCM-|lwr[1,[|wll:=1 T
and
1
(60) WI—ETEw <1.1 - Apax(XE)-

max
[wreli SCM-Jwr |1, |lw]=1 7

Now we turn to w1 RT Rw. Fix T C [p] with | T| < k. Then we have
(61)
p
1

max w TRw < max max ( E Ry jw;)?
lwreli <CM-lwr |1 llwl-=1 7 lorelh SOM-Jlor s, [Jollz=1 1<I<n =

(1Rlloo llwl1)?

< max
[wre [l SCM-[[wr |, [|lw]l2=1

< max (IR0 (1 4+ CM)|Jwrl1)?
lwre s SCM-Jlor | lwla=1""

(I1Blloo(1 + CM)VE|wr]l2)?

< max
lwreli <SCM:[|wrlls,llwll2=1
< M- k| R[5
By combining (60) and (61), we establish

1
max wIT —RTEw
lwrelli SCM-|lwr |1, llwll.=1 7

1 1
< max \/wTRTRw . \/wTETEw
lwrelt SCM-lwr (|1, |lwll2=1 V 7 n

1 1
< max —wTRTRw - max —wTETEw
lwre |1 SCM:|lwr|1,]|w|l2=1 7 lwre |l SCM-|lwr |1, lwll2=1 T2

SVM? K| R

By the decomposition in (58) and the bounds in (59), (61) and (62), we establish

. 1 = >
min T <(XPCA)TXPCA - EE> w
lwreli SCM-flwrlls,l|lwll2=1 n

> 0.9 Auin(BE) — CV/ M2 k|| RIZ, — CM? - k|| RIIZ,

where C' is a positive constant independent of n and p. If

(62)

k1
(63) nzM2.$ and M -VE|R|js — 0,

we establish that, for a sufficiently large n, there exists a small positive constant 0 < ¢ < 0.9
independent of n and p such that

RE <1 ()?PCA)T)?PCA) > Amin(ZE).

n
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By the Weyl’s inequality for singular values,
(N(X) = M(D)| = [N(D + E) = M(D)| < [[Ell2 for 1<I<p.

We then apply Theorem 5.39 of [57] and establish that, with probability larger than 1 — p~¢
for some positive constant ¢ > 0,

INX) = ND)[<[El2 SvVn+p for 1<1<p.
Since D is of rank ¢, then A, (D) = 0 and hence

1
Ag+1 (XXT> ‘ Smax{l, B}
n n

Recall that X =1, A; ;U. V. For any w € RP and [pm] > g + 1, we have

69 P (D|SVa+yh and

Lom]
(A)TXTQ2XCU WT Z AmeJ meJV,]V W+WT Z A VJVI]W
j=1 j=lpm]+1
Lpm]
2T D Al oy Vs Vi o7 Z AJ V.V
Jj=q+1 j=lpm|+1
Lpm] m
)\meJ( XXT)
> T A2V VT T A2V VT
= /\q+1(gXXT w Z GV wtw Z A AN

J=q+1 j=lpm|+1
If A ) (X XT) > cmax{1,p/n}, together with (64), we establish that, there exists some
positive constant ¢ > 0 such that, with probability larger than 1 — p~¢,
Mo (XXT)
et (LXXT)
This leads to
wWTXTQ?*Xw > wT(XPOA)TXPCA,
for any w € RP and hence with probability larger than 1 — p—¢,
1 1, = =
RE (XTQ2X> >RE ((XPCA)TXPCA> .
n n

To complete the proof, we shall apply the following lemma to verify the dimension condition
(63). The proof of the following lemma is presented at Section B.2.

LEMMA 6. Suppose that assumptions (Al) and (A3) hold, H; . is a sub-Gaussian ran-
dom vector, g +logp < \/n, k= ||Bllo satisfies kq?logplogn/n — 0. The loading matrix

U € RY*P satisfies maxi<i<g1<j<p|Vij| S v/1og(qp), M(¥) /N, ( ) < C for some positive
constant C' > 0 and (23). Then with probability larger than 1 — p~¢ — exp(—cn) for some
positive constant ¢ > 0,

ql ogp

IRl S

” q2 (log N)3 < p
og(q

2
mm{n ! AQ(\D)> qlog(gp)
(65) !

logp qlogN P
+ + : qlog(gn).
( o ) R VR
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Hence the dimension condition

M? - kq?logpl
q~logplogn
n
together with (23) implies (63).
Furthermore, in Section B.1, we provide theoretical justification on the lower bound
A om (X XT)
Lem|\ :

B.1. Lower bounds for X |, (%XXT).

LEMMA 7. Suppose that assumptions (Al) and (A3) hold and H; . is a sub-Gaussian
random vector. With probability larger than 1 — p~¢ for some positive constant ¢ > 0, if either

of the following two assumptions hold for Z; . = Eil/zX,-

)

1. p/n—c* €]0,00) and % (ZZ-T’.AZZ-V. - Tr(A)) 20 as p— oo for all sequences of com-

plex matrices A € RP*P with uniformly bounded spectral norms || A||.
2. p/n — oo and the entries of Z; . are independent.

then |y | (LXXT) > max{1,p/n} for n sufficiently large.

The condition % (ZZT AZ; . — 'I&"(A)) 2, 0 is implied by the forth order moment condition:
for 1 <14 <n,

(66) E|Zij, Zi j, Z; j, Zi.j,) = O for all j1 & {ja, j3,ja}-

The moment condition (66) is substantially weaker than assuming independent entries of Z; ..
Both conditions 1. and 2. are imposed only for technical reasons so that we can directly apply
the lower bounds for the median (or smallest) singular values established in [63, 57, 51].

We now apply (66) to establish % (ZZT AZ; . — Tr(A)) 2 0. Note that

2 2
E Z;_Azi,.—Tr(A)‘ -0 e (A)?

7T AZ;

< Y EZLZAALP+ Y] BZLZE|AjA
1<j#I<p 1<j#I<p
S D lAulPse
1<j#l<p
where the first equality uses that E[ZzT AZ; ] =Tr(A), the first inequality follows from (66)
and the last inequality follows from the bounded spectrum norm condition. Then we apply
Markov’s inequality to establish % (ZZ-T’,AZZ'V. - Tr(A)> 20 as p— 0.

We now present the proof of Lemma 7. With Z = X E)_f, we have

1

67 Amin (ZZ7) = Agin (XD XT) < —
( ) ( ) ( X ) Amin(EX)

Amin (X XT).
Note that Z;. = ¥, >UTH,. + £, E;.. For any v € R? and ||v||2 < 1, the random variable
vTZ; . has sub-Gaussian norm upper bounded by C' (HUTE)_(E\IJTHz + ||E)_(E’UH2> for some

positive constant C' > 0. By (134), we show that v7Z; . has a bounded sub-Gaussian norm
and hence Z; . is sub-Gaussian.
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We now establish the lower bound for A| ., (%X XT) by considering two cases.

Case 1: p/n — ¢, € (0,00). For any set B C R, define p,(B) = 1% P_1(\; € B) where

{\j}i<j<p are eigenvalues of %Z ZT. Let u., denote the Marchenko Pastur law: for any set
B CR,

(1-1/c,)-1(0€B) + [P YD qeB)dt if c,>1

Ue, (B) = W =) a 2me, t .
Jo e - L(te Bt if 0<e <1

where a = (1 — /c;)? and b= (1 + /c;)>.
In the following, we shall apply Theorem 1 of [63] and establish

(68) Ip LA te, almost surely.

Note that Theorem 1 of [63] holds under the condition that
1
p

as p — oo for any sequence of complex matrices A € RP*P with uniformly bounded spectral
norms || Al|2.
We now apply (68). When ¢, # 1, (68) implies that

(Z;,AZZ,. . Tr(A)> 20

1
(69) lin_1)inf Amin <ZZT> >(1- \/c*)2 almost surely.
n— oo n

When c, = 1, we need to calculate the median (or more general quantiles) of the distribution

V@a—nt

with the density function Y=_—. For p = 1/2, the median is within the range between 0.65
and 0.66, which, together with (68), lead to

1
(70) liminf A |, /) <ZZT) >0.65 almost surely.
n—oo n
We combine (67), (69) and (70) and show that there exists some constant ¢ > 0 such that
1
(71) liminf A, /9| <XXT> > cAmin(Xx) almost surely.
n—oo n

Case 2: p/n > C for some positive constant C' > 0 and the entries of Z; . are independent.
Theorem 5.39 of [57] implies that with probability larger than 1 —p~¢, A\, (2) > /p—Cy/n—
v/1og p, where C' is the constant defined in [57] and independent of n and p. Combined with
(67), we establish that, with probability larger than 1 — p~¢,

1 1 P
2 —XXT) > A (=X XT) 2 = Anin(Zx)-

B.2. Proof of Lemma 6. We prove the lemma through a finite-sample analysis of the
factor model (56). The proof idea follows from theE in [1] and [2], who establish the limiting
distribution for any single entry of the matrix R = D — M ; see Theorem 3 in [1] for details. In
our following proof, the main difference is to establish the rate of convergence of || R|| o using
finite-sample concentration bounds. We also relax the strong factor assumption A\, (¥) =< /p
in [2] to the weaker condition (23).

Define A? € R9%4 to be the diagonal matrix consisting of the top ¢ eigenvalues of the
matrix nipX XT. Define

(73) O = (VT /p)(HTH/n)A~2 € RI¥9.
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Define N = max{n, p}. Define the events

{|ZH HT 1] W}

G2 { o 15 5 V108
lo log(n
g?,:{max [T, pl < VIV 180D VIl p}
1<t< \/Tj
g:{ma ’\I/TE‘S lo N}
4 1<t <n1<]<q H\I/J |2 ! ViegN
= T <
9s {fgiag; ElLE:i./pS 1og(np>}
1 1
Ge = { ax E;.Et'/p‘ < Viogpy og(np)}
1<t#i<n| 7 7 N/
TEWT /
g7 { HH EVY ”2 ZH ET\I/T N q+10gp . )\max(\:[l)}
n p
{HHHQ<WHEH2<W+W}
HTE 1 — 1 1 1
o= {1l (155 1] 1
np n <= , P VP
Ag(P) —~ ~ A1(D)
g :{Cq S)\mmA <A ASC 7)\max0 SC
10 /p (A) <M(A) /b (0)
- logp

1<5<q,1<I<p

Gi2 = { max

lo
LS mm < gp}
n

where C > 0 and ¢ > 0 are some positive constants. Define

g 012 1g]
On the event G4, we have
W ||o4/log N log N
(74) max H*\I’Et 2 < i+ max I Js l|2v/1og < qlog .
1<t<n 1<j<q p \/f)

The following lemma shows that the event G happens with a high probability, whose proof
can be found in Section B.5.

LEMMA 8. Suppose that the conditions of Lemma 6 hold, then we have
(75) P(G)>1—p ¢ —exp(—cn)

for some positive constant ¢ > 0.
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The following lemma characterizes the accuracy of the loading estimation, which can be

viewed as the finite sample version of Theorem 1 in [2] and Theorem 1 in [1]. The proof of
the following lemma can be found in Section B.3.

LEMMA 9. On the event G,

2 3/2
B D ¢*(log N) qlog N
_ T <
(76) pax [[Hy. —OTHy [l2 S N2(W) ( iV

[

with N = max{n,p}. Furthermore, with probability larger than 1 — n~
constant ¢ > 0,

— p~ ¢ for some

(77) o OTH. K—len:H 1HT\I/E << p )Qq;(IOgN)g
t:' - t" - - "'7 - t7' ~ :
ni"p ot AZ(¥) /) min{n, p}
and
(78)
PO 1 ~_ 5 1zn: T Hl I < p qlog N
A*QfE H; —HTUE, || <|[A2|l2-||=Y H; H||2-||-VE;.||2 < - .
n — 1, p 7, tv , || ” H n pt 1, 2, p t7 )\g(w) \/}3

The following lemma characterizes the accuracy of the loading estimation, which can be
viewed as the finite sample version of Theorem 2 in [1]. The proof of the following lemma
can be found in Section B.4.

LEMMA 10. On the event G,
(79)

o 84— 00| g CUEE (b N[ floop, 1Y b, fulosp
1<i<p 1 SR min{n,p} /\2(\11) n NG )\g(qj) —

For1 <t <mnand1 <[ <p, we have the the following decomposition for 5t,z — My,
(80)
HtT\I/l - HtT\IJl

=H] V. — (OTH, )TO W,
= (H;, — OTH; )TV, + (OTH, )T(V.;, — O~ )
— (H;, —OTH, )TO™'W  + (OTH, )T (V. — O W ) + (H;, — OTH; )T(W.; — 0710 ).
On the event Go N Gy, we have
|07 4]l2 S V/glog(gp) and  [|OTH; |l S v/qlog(ng).
Note that

IR =  max ]HﬁtT\T/J — H V|2
1<t<n,1<I<p ’ )

By applying Lemmas 9 and 10 to the decomposition (80), we establish that (65) holds on the
event G.
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B.3. Proof of Lemma 9. Recall that A2 € R7*9 denotes the diagonal matrix consisting
of the top g eigenvalues of the matrix %X XT. By the definition of H in (57), we have

~ 1 ~
H=—XXTHA 2
np

With the above expression, we establish the following decomposition of fl,;. —OTH;. € RY
for1 <t <n,

~ 1 ~ o~
H,. —OTH,. =—A?H'XX;. — OTH,.
np

1 ~ o~
= —A2HT(HV + E)(VTH, +E;.)— OTH,.

np
(81) L~ oz L~ ox L~ o=
= —A2HTHVUE;, + —A2HTEVTH, + —A2HTEE;,
np np np
~ o1~ 1 I~z 1o I~ 1 o
—A n;HpH\IJEt+n;HpE\I! Ht,.+n;Hi,.pEi7,Et, .
Proof of (76). By (81), we have
(82)
| He,. — OTHy |2
~ Tew~ 1 e~ 1 Tew~ 1
<[|A?|)2 <HnZHfi,-pHZ.\PEt,~”2 + HEZHL-I;EZ.‘PTHt,Hz + HnZHz',-pEZ.Et,-\b) :
=1 =1 =1

We upper bound the three terms on the right hand side of (82) as

|ylif1- LirwE, |, < 1i\|ﬁ |2 HT OB
ni:l z,~p i, t, 112 ni:l 2,112 D i, t,

(83)
I 5 2 1~ 1 T 2
< ﬁZHHz,HQ ﬁZ’EHl’\IJEtJ ;
i=1 i=1
S e wth < 2 S o BT v,
ni:l z,-p iy t,- 112 > ni:l 1,112 D i, t,
(34)
1 5 2 1~ 1 T 2
i=1 i=1
I 1o Iz o 1ot
I 2o Fo LBl < 55Vl LB |
(85)
< liufj 12 li,lETE 2
~ A\l n < R A
i=1 i=1
Note that

I~ 1
max | = |=H WE; |2 < max ||H;. |2 max |VE;. /pl2,
1<t<n n P P ’ 1<i<n 1<t<n
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1o~ 1
— ZETUH,.
1?%}31 n;|p b g

Together with (74), we establish that, on the event Go,

2< H,. VE: ‘
< mex | He. [l max |05, /pll.

1.1 1o 1 2(log N)?
max { max *Z‘*HJ.WEL-P: max —ZFEJ_\I/H@.P Si
Istsn\|n<="p Istsn\|n<="'p VD

Note that HTH /n = I implies LS, Hﬁz 2 = q. Combined with (83) and (84), we estab-

lish that, on the event G,

I~ 1 1 =~ ~
(86) max{un;f[i, HZ.T,,\I/EL.HQHH,;H@.
1= 1=

1 2(log N)?
= SETUTH, |p b < w.
P p " /P
Note that

1 1 1 1 11
EZ\*EZ.E&-P: EZFEZ.Et,-P+E’*E{.Et,-|2-
i1 P i P p

On the event G5 N Gg, we have

1~ 1 log pl 1
s Z’EJ.Et,.IQS\/ dogplog(ng) , logln),
1<t<n \| 1 — P p n

‘2<qlogN+ [qlog N

Together with (86), (87) and the definition of Gy, we apply the decomposition (82) and
establish (76).

Proof of (77). We shall establish the bound by applying (81) and the bound (76). Note the
following three decompositions

Combined with (85), we establish

I~ 1 o
(87) Hn;H@.pE@.E@.

Iz 1 1 o, = 1 1« 1
~> H,.~HUE, =~ (H;.—OTH; )-H] VE; +OT—> H; —~H] VE,_
n =1 P " i=1 P " =1 b

lem~ 1 1 ~ 1 1 1
- zHi,.gEg,xpTHt, = > (Hi. - OTH@.)];E;.\IJTHM +07T— ZHL.]SE;.\IJTH”

=1 =1 =1
I~ 1 1o ~ 1 1 — 1
fZHi.fEiT_Et.:fZ(H,-.—(’)THi.)fElT_Et.+OTfZHi.fEiT_Et.
ni:l ’p , ’ ni:l ’ 7 p 7 7 ni:l ’p , ,

By applying (81) and the above three decompositions, we establish
(88)

U P PO 1
N(—A’H'XX, —OTH, —A>=) H;, ~HI VE, )
np s P

1, ~ 1 1~ ~ 1
= > (H;, - OTHZ-,,)};H;.\I/Et, + = > (Hi. - oTHi,.);)E;,ant,.
=1 =1

1 — 1 1 e ~ 1 1 — 1
OT=N "H, “ETUTH, + = H, —OTH; )-ETE,. +OT=Y H, ~ETE,.
+ nzzl T t, +nzzl( ) 7)p i, 1t + nzzl T L,
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Note that

n

~ 1
= (Hi - OTHi,.)];HZ{,\l;Et,. <

n

~ 1
EZ(HL. — OTH; )? EZ (H] VE;_/p)>
= i=1

Z (ETUTH,_/p)>.
=1

3\H

}*jg:(jia.—-C)Tfﬁf)z
n “

S
NE

- 1
H; —OTH; )=ET UTH, |<
p b

i=1

On the event G, we have (74) and then

(qlog N)*/2
¥ .

max max
1<t<n 1<i<n

< ; <
HIWE,. [p| < max |[H; [l2 mas [VE; /pl» S

With the above three inequalities, we apply (76) and establish

1 e ~ 1
f§ (Hi. — OTH; )-H] OE; .|+
n 4 p "

=1

1o ~ 1
—> (H;.— OTH;.)-E] UTH,
nizl p

(39) .
< P q:(logN)?
~ ALY /py/min{n, p}
Note that
1 LIS 1 1 n 1 n
”Zl(H ~OTH,) ELE <\ | ;( —OTH;. 2, |~ Zl (E]Ey. /p)>.
1= 1= 1=

On the event G, we apply (76) and (87) and establish

3 5
-~ p  q(logN):
90 — H;, —O"H; ET E . .
" o 2= O B S S35 i)
We now turn to the upper bound for OT X > Hi 1ET WTH; . and first consider the
setting ¢ # t. Note that

1
91 H;. ET\IITH < — H; E\I/TH
R | Vi D
2

Conditioning on H; ., the random variable H; ; Z%EZT WTH;. is of zero mean and sub-

exponential with sub-exponential norm upper bounded by C||WUTH, ./p||2. By Proposition
5.16 of [57], we establish

1
P | max *ZH,J ELUTHy, | > CI[WTHy, [pll2/ 2"

1<j<q |n

|fﬂ §§n_c.

Together with the definition of the event G3, we establish that, with probability larger than
(1—n"¢)-P(Gs),

1 log N3
92) max *ZH,J g, | < YALEN)?
1<j<q|n P \/@
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On the event G N G4, we apply (74) and establish that for any 1 <t <n,

1 1 (qlog N)?
< | Hy Bl BT S =
2 N b n./p

1.1
’Ht,Eg,xIﬂHt,.
n p ’

Together with (92), we establish

< allogN): | (glogN)?
2’\“ N n./p

We now consider the upper bound for OT 1 ZZ 1 Hi. E E,. and consider the setting
1 # t. Note that

(93)

ZH E\IJTH‘
21

(94) ZH E By < \f&%} nZH,J El E,,
e 2 2
Conditioning on F ., the random variable H; ; %EZT _F . is of zero mean and sub-exponential

with sub-exponential norm upper bounded by C||E;./p||2. By Proposition 5.16 of [57], we
establish

log n

1
(95) P | max fZHJ E] Ey.| > C|Ey./pl2 | By | <nc
p

1<j<q|n

Together with the definition of G5, we show that, with probability larger than (1 —n~°)-P(Gs),

_ logN log N
(96) max fZHJ ElE.|S 22 and ZH ET B | <Yl
1<j<q |n \/Np Z#t \/np
2
On the event G N G, we have
1.1 log N)2
‘HEE < |yl B By, 5 VIR
n p 2 n

Together with (96), we establish
ZH ETE < Ve | VallosN):
~ /np n

On the event G, we apply the decomposition (88) with the error bounds (89),(90),(93), (97)
and then establish (77). The upper bound in (78) follows from the definition of Gy and (74).

o7)

B.4. Proof of Lemma 10. By the definition of ¥ in (57), we now control the estimation
error of ¥.; = %H TX.; € RY. We start with the following decomposition,

- 1 ~
V.- 071\1’.71 = fHT(H\IJ.J + E.J) — Ofl‘l’"l
mn

1 ~

=—HT(HV.;+ E. ;) — (9_1\1/.1

98) A o 7
= T ((Ho —H+H)O v, + E.J) oy,

1~ ~
=—H'"(H-HO YW, + OTHTElJr (H HO)E,,.

n
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To establisb (79), we control all three terms on the right-hand-side of (98).
Control of L HT(H — HO~1)¥. ;. Note that

lfj?T(H —HO YU,
n

(99) :lﬁT(HO - H)O ',
n

1 ~ ~
=—OTHT(HO - H)O~ R - (H HO)Y(HO — H)O™'¥.;.

On the event G, it follows from (76) that
1 ~ ~ 1 =~ _
|- (H — HO)T(HO — H)O 1‘1’-,1\\2§*HH—H0H§HO "l

S qrﬁo{gn]\g} (Azf\m)Q'

(100)

Since
n

~OTHT(HO — H)O™'0. = —OT ;HL.(OTH@ —H)TO ',

then on the event G, we have

1 ~ 1 <& _
1oy | -OTHT(HO - H)O™' |2 < I~ > H, (OTH,. — H,;.)"[21/qlog N.

t=1
In the following, we shall control

n

1 & ~ 1 ~
I~ ;Ht,~(OTHt,- —He )z =1~ > (OTH,. - Hy; ) H] |2,

t=1

It follows from (81) that /A\% S (OTH; . — ﬁt)HtT can be decomposed as
(102)

Z( ZH 1HT\I/Et + = ZH 1ET\IITHt + = ZH ;ETEt>Hg,

z—l

1 e ~ 1 — Tew~ 1 1 —
== "H, H || = vE, H =N H, SETUT| (= H, HS
() (vmm ) « (o) (5 mm

T~ 1 1 —
NH, CET =S ELHT .

Note that

n

1 e ~ 1 ~ 1 o
- Z;HHT ==y (H _ OTHi’.> H]. + 07— " Hi H].
1=

i=1 =1
1<~ 1 1~ 1 I~ 1
SN H BT =% (Hi — OTH, ) SELWT+ O 3 H, BT
— p ni p i P

n

1 ~ 1 1 ~ 1 1 — 1
SN H-El ==Y (H - (’)THi,.> “ET + 0= H; ~E],
p v n P = P

45
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On the event G, we apply (76) and (74) and establish

||1i<ﬁi._OTHZ..>HT I <q5/2(10gN) p

ni= 7 7 ~ /min{n, p} )\2
I~ (5 1 ¢*(log N): p
1= (Hi —OTH:,) SELUTo S —= ST
w2 e = O ) e e o1 3200
I (= 1 ¢*(log N)3 p
1= > (Hi ~ OTH,, ) SEL 2 S —= s
w2 (e =0T ) L e Pl 32(®)

On the event G, we have

1n = ¢**(logN)?2  p
(103) —» H H'|| <1+ . : :
w2 ML S T R
I~ ~ 1 Iem~ 1 (logN)
(104) max< (=Y H; -ET 0T = Hi,.ng <

Then on the event G, we have established that

||KQEZ(OTHt-_ﬁt-)HT (logN)’

D N W AB)

Together with (100) and (101), we have
< ¢ (logN)= < p >2
~ A% ()

o~ min{n,p}

-(1++/p/n).

(105)

lﬁIT(H —HO Y
mn

Control of %OT HTE.; Note that

1 1w
—OTHTE,;=0T=> H; Ey.
n n

On the event Gi19 N G12, we have

< |logp
2 n

Control of %(fl — HO)TE. ;. It follows from (81) that the term KQ%(HT — HO)TE.; can be
decomposed as

1
(106) ~OTHTE,
n

(107)

Z( ZH HT\IIEt+ ZH ET\I'THtJr ZH EEt)Et,l
:(i;ﬁm); ( ZEt By — (Zk). ) ( ZH HT) U(Xp).
2
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On the event G1; N G2, together with the fact that A< (X 5) < C for some positive constant
C >0, we apply (103) and (104) and establish

(iifllﬁ) ( ZEt Ei; — (2p). ) ( ZH HT> U(Sg).y
i=1 t=1
A1(P) log p 1 ¢*?(log N )? D
S v (\/ ==+ ><1+ ] 2 )
1 — ~ 1 Lo 1 — q%(logN)é logp D
EZHz,.]SEi,.\P ) <nZHt E, > < T \ﬂ/ )
izﬁz;E@T> (iZEt,.Et,z - (ZE)J) + <izﬁz;EzT> (XE).4
i i=1

¢*(log )= /plogp P
SJ\/mim{n,p}\/ﬁ( n H) AZ (L)

By the above bounds, we apply the decomposition (107) and establish

(108)
logp 1 ¢*(log N)2 [plogp )\ _p
n VP /min{n,p}\/p n AZ(D)

A combination of (105), (108) and (106) leads to (79).

1~
A’—(H-HO)TE | S
n

B.5. Proof of Lemma 8. Control of G; N G> N G3. By the equation (5.23) of [57], with
probability larger than 1 — p~¢, the event G; holds. Note that

1
H |y < H: UTH <— ’\IIT‘H ‘
fg&x [ H;,[[2 < \[1<i§mn%éj§q| ijl and f?f‘} I te/Pll2 < D 1<t<rga1}é]<p 77

Since {H;.}1<i<p are i.i.d. sub-Gaussian vectors, with probability larger than 1 — (p) ¢,

max _ |H; ;| < +/log(ng)

ST >

and

max _|WTH, | < 9]z v/log(np) S v/av/1oe(pa) log(np)

1<i<n,1<5j<p

Hence, we establish

P(91ﬂ92ﬁg3)>1— B
Control of G4 NG5 NGg. Forany 1 < j <gq, ”\I, T \IJ E} . is sub-Gaussian random variable
and this leads to P(G4) > 1 —p_c. We also have P (maxt,j |E il S log(np)) >1—(np)~¢,

which leads to P(G5) > 1 —p~
We fix 1 <t <nand con31der i # t. Conditioning on FEj ., the random variable ET E./p

is a zero-mean sub-Gaussian random variable with sub-Gaussian norm || E .||2/p. On the
event G5, we establish

(109) P <rg§g<!E{.Et,-/p\ < V9ogpl|Er.ll2/p | Et,~> >1-p°
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Note that
(110)

P (glg} |E] E;./p| \/logp\/plog(np)/p)

>P (mgf |E7Er./pl S V1ogpl|Ex.
1 b

> / P (m#x |E].E, /p| S \/ogpl| Ex,
Z b

where ;1(E;.) denotes the measure of E; .. Combined with (109), we establish that, for a given
1<t<n,

2/, |1 Bt [l2 S PlOg(”P)>

/| E) 1| B ll2 < /plog(np)u(Er.)

P (smax |7 B /o) S Vogp/pTogtnl /) = (1= ™) - F(G) 2 1=

where ¢ > 1 is some positive constant. By applying another union bound, we establish
P(Ggs) > 1 — p—(¢=1). Hence, we establish
P(GsNGsNGs)>1—p “.

Control of G7. For any vector v € RY and v € R?, we have

Ien,, 1
—> H,—E]UT
" i=1 p

Since H;. and E;. are sub-Gaussian random vectors, the random variable uTHi.%EiT, UTy

is zero-mean with sub-exponential norm upper bounded by C w S M) yye apply

P
Corollary 5.17 of [57] and establish that, for t < /n,
A (Y)

t
P > .
( vnoop
We shall use Nq to denote the e-net of the unit ball in R?; see the definition of e-net in
Definition 5.1 in [57]. Taking the union bound over all vectors u,v € N, we have

|
= sup UT*ZH,L'.*E;\IJTU
n =1 p

9 u,ERY, |lull2=1,||v]|2=1

1 — 1
TN H, ZETUT
u ”Zl o B v

) < exp(—ct?).

o A(Y)
vnooop

where ¢ > 0 is some positive constant. We choose t> = C'log(|Ny|? - p) < v/n for some
positive constant C' > 0 such that |N;|? exp(—ct?) < p~¢ for some positive constant ¢’ > 0.
By Lemmas 5.2 and 5.3 of [57], we take |[N,|? = C?7 and apply (111) to establish that
P(G7)>1-p~©

Control of Gg N Gg. By Theorem 5.39 of [57], we establish that P(Gg) > 1 —exp(—cmin{n, p}).
Since ||HTE||2 < ||H||2|| E||2, on the event Gg, the event Gy holds. That is, we establish that
P(Gs N Gg) > 1 — exp(—cmin{n,p}).

Control of G1g. We start with the decomposition

(111) ]P’< max pe

u,UENq

1 & 1
TN H, ~ETQT
u nz; i Bl v

) < [N exp(—ct?).

1 1 1 1 1
—XXT—- —HUVTHT= —HVET+ —FEVTHT + —FFET
np np np np np

On the event Gg, we have

1 1 1 1
|—ETE[ls < —|E|} <~ +
np np n
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1 1 1 1
HH\PE < ol Bl g = L
np 5 Mp Vo /P
Then we have
1 1 1 1
(112) CXXT- S HUUTHT| <
np np s TN /P

Note that the top g eigenvalues of nipH WWTHT are the same as the top ¢ eigenvalues of
2 YTHTHU. We have

1 1 1

(113) S WTHTHY = “UT(HTH/n—1)¥ + - 0T
np p b

On the event G;, we have

2
Lo - D), < (/408 AL
p n p

Note that the top g eigenvalues of %\IJT\II are the same as the top ¢ eigenvalues of %\IJ\I/T.
Hence, we have

1 2
(114) max |\ <\I/THTH\I;> A (1\I/\I/T> ‘ < q+logp )\1(\1/).
1<i<q np D n D

A combination of (112) and (114) leads to

2
A <1XXT) N\ <1\1n1ﬂ> < Jatlosp M(Y) 1
np p n P VD

By (23), there exists positive constants C' > ¢ > 0 such that
AT(P)

AQ ] ~ —~
q( ) < )\min(AQ) < )\maX(AQ) <C——.
P p

By the definition of O in (73), we have

max
1<i<q

C

-1~
101l < | 9L /plla| H|2 [l H ]l A~

With probability larger than 1 — p~¢ — exp(—cn),

- p
A2 < d ||H|2 S V0.
| ||2NA3<\P) and |Hl2 < vn
Applying the above inequality together with the fact that || UUT /p|lo < A2 (W) /p, Hfl lla=+n
and A1 (W) /A, (¥) < C, we establish that, with probability larger than 1 — p~¢ — exp(—cn),

1012 <",

for some positive constant C’ > 0. That is, P(G19) > 1 — p~¢ — exp(—cn).

Control of Gi1 N Gi2. The proofs follows from the fact that E; ;Fy; — (Xg),; and Hy jEy
are zero mean sub-exponential random variable. We apply Corollary 5.17 of [57] and the
union bound to establish P(G;; N Gi2) > 1 — p~¢ for some positive constant ¢ > 0.
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APPENDIX C: ADDITIONAL PROOFS
C.1. Proof of Proposition 2. We note that
— QX B = Qe+ QA+ QX (B — B™") + QXb,

where A; =¢TH; . — bTX@. forl1<i<mn.
Then we have

~2 2 _ HQeHg

2 Qinit 2
(115) Je_ae_Tr(QQ) _Je+Tr( 2 HQA—i—QX(B_B )+QXbH2
1 2 2 Dinit 1 2
+T1“(Q2)6TQ A+ (Q2)6TQ (ﬁfﬁ )+T1"(Q2)€TQ Xb.

The following analysis is to study the above decomposition term by term. First note that

HQeHg 2 eTUS?*UTe 2

T™(Q2) "¢ Tr(Q?) ¢

By Lemma 11 in Section C.7, we establish that with probability larger than 1 — exp(—ct?) for
0<t<STr(Q%) <n,

eTQe 9 Tr(Q4)
By (47), we show that
(117) P (illAll% Sqlogp/p> > 1 (logp)~"/%.

Since e; is independent of X;. and H; ., the term ﬁfﬂ Q2A is of mean zero and
variance

1

Tr?(Q2)

where the inequality follows from Tr(Q?) < m < n andHQ2AH2 < ||All2. Together with
(117), we establish that, with probability larger than 1 — (logp)~/2 — L for some ¢ > 0,

ol QA3 S HA”Q)

qlogp
118 eTQQA‘ <ty | 0.
e Tr(Q?) np
Since Tr(Q?) < m =< n and||QA||2 < ||A||2, we have
(119)
1 ~ 1 1 ~ . 1
A X _ pinit Xb 2 < = A 2 - X _ pinaty |2 - Xb 2
Tr70m 108 + QX (8- B™) + QXbI} 5 IQAIE + S 1QX (8- A7 + - QX3
lo klo 1
[ e
with probability larger than 1 — (logp)~ 172,
Recall that W € RP*P as a diagonal matrix with diagonal entries as W, 1=9eX.
for 1 <[ < p. We establish that
(120)
1 ini 19Xb||2)*
eTQQX Dingt eTQQXW 1 - W init §M2/€)\2—|—( ’
(07 B=B"N < oo [W(B—=5")IIn NG
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where the last inequality follows from (41) and (153).
Finally, we control (92 ye TQ2 X b, which has mean zero and variance

1 1
E TQ’Xb ) < —olbTXT 4Xb< oc XTQ*X||2||b
(5gm e @XD) S ot XT QXD < T XK 0l

and hence with probability larger than 1 — % for some ¢ > 0,

(121) —eTQ2 WWHQXHzllez

A combination of the decomposition (115) and the error bounds (116), (118), (119), (120),
(121) and (44) leads to Proposition 2.

C.2. Proof of Proposition 3. By the Wely’s inequality, we have that, for 1 <[ <m,
(122) (A(X) = N(HE)| = [N(HY + E) = N(HV)[ < A\ (E).

By Theorem 5.39 and equation (5.26) in [57] and Apax(Xg) < Cp, with probability larger
than 1 — exp(—cn) for some ¢ > 0,

Amax (F) S max{y/n,/p}.
Note that A, (2XXT) = 1)32(X). Since Ag41(HY) = 0, we establish the proposition by
applying (122).
C.3. Proof of Lemma 1. We express the model (2) as
Xy =Vt + By, X1 =YL +E

where U; € R? denotes the j-th column of ¥, and W_; € R9*(P—1) denotes the sub-matrix of
W except for the j-th column. We define B=EE; _;E] .. Since Cov(H;.) = I4x4 and the
components of H; . are uncorrelated with the components of E; ., then we have

(123)

v =[B(X1, X)) B, X ) = (97,0 + B) (97,9, +EE B ).
We apply Woodbury matrix identity and then have
a2y (w4 B) =B BT (140 BT,) v B
We combine the above two equalities and establish the decomposition y = v¥ + 4 with
v¥ = BT'EE; ;E1
and

(125) 'yA:(\IJT_j\ILjJrB) U0 - BT (14 0BT ) P

Proof of (32). We define D =V _;B —3 ¢ R?X(P=1) and hence the first component on the
right hand side of (125) can be expressed as

-1
_1 -1
(07,95 +B) W= B7H(DTD+1)7 DY,
By Woodbury matrix identity, we have
(DD +1)"' DT = (I1- DT(1+ DDT)"'D) DT = DT(1+ DDT)"*
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and hence
(126) (‘IJT_j\I/,j+B>71\I/Ij\11j:B_éDT(I—FDDT)—l\IJj.
The second component on the right hand side of (125) can be expressed as
B:DT(I+DDT) ' w_;4F
Together with (126), we simplify (125) as
(127) v =B72DT(1+DDT) ™ (¥ + W_j4F).
Under the assumption that ¢ < Apin (2) < Amax(2£) < Cp, we introduce the SVD for D
as D =U(D)A(D)V(D)T, where U(D),A(D) € R?*9 and V(D) € R®=1*4, Since
DT (1+DDT)"' =V(D)A(D)(AD)* +1)'U(D)T,
it follows from (127) that

1 N (D
(128) Il < 1Bl max D)

B2 2 BT PPN | AT
1Sl§q)\l2(D)+1H ]+ ]’Y ||27

where \;(D) is the [-th largest singular value of D in absolute value. By the condition

0 < Amin(2E) < Amax(2g) < Cp, we have CLOI <B= EEL,]-ElT,_j = éI. We further have

coM2(V_;) < A2 (D) < CoA}(P_;) for 1 <1 < g and establish the first inequality of (32). The
second inequality of (32) follows from condition (A2).
Proof of (33) We fix 1 <7 <nand 1 < j <p. Recall that

nij=Xij— XiT,_ﬂ = q;JTHl — (\ijHi’.)w +E;— E{_ﬂE _ ET_j,YA’

2,

— T E
V7/7] - EZJ - E,—‘]’Y ?

(]

and

0ij =Mij — Vij = \IJJTHZ - (‘I’IjHi )Ty — EZ-T,_ﬂA-

Since E; . is uncorrelated with H; . and v; ; is uncorrelated with £; _; and H; ., we have v; ;
to be uncorrelated with §; ;. Hence we have

(129) Var(m,j) :Var(Vm-) +Var(6l-7j).

By the expression of y in (123), we express Var(n; ;) = Var(X; ;) — Var(X]_,7) as
(130)

T —1
19115+ (Se)j, — (‘I’Ij‘l’j + EELJ'EL—J') (‘I’T_j‘l’—j + B) (‘I’T_j‘l’j + EEl,jEl,—j>
T
19,13+ (Tp)sy — (V7,0 + BBy By ) B (97,0, + BBy, B )
T -1
+ (O, + BB B ) BT (T4 0 BT ) w5 (BT W 4 BB By )

where the equation follows from (124). Note that
Var(vij) = (Sp);; — (BB E1—j) "B (EE; E1 ).
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Together with (129) and (130), we obtain
(131)
Var(8;5) = W53 — WT0_;B~'WT W —20TW_jy"

-1
+ (0T 0+ BE By ) BT (1w BT ) e B (W W BB )
= [1W;(3 - ¥TO_; BT W, — 2070y "

1
+0Tv BT (1w BT ) v BT

T 19,7 —1T*1 E ENT, T —1T*1 E
+ 2070 BT (14w BT ) 0y 4 ()T (T4 9 BT ) o

Note that
—1
19,3 = w7 (I+\p_jB—1xp1j> (I+\1/_jB—1fojj) ;.
We have
-1

19503+ ww ;BT (T4 9, B79T ) w BT,
(132) Ny

— T (1+\1;,jB—1\111j) U+ UTU_ BT 0,
Note that

ARt ANY (SR At A IR ASEE G4 R
—0TU BT (T4 0BT ) E
T 1T —1qT -1 E
— 0T (14w BT ) (T4 0BT ) 0y

1 -1 E
=l (149 ,B70T)) v nE
Together with (131) and (132), we establish

1 —1
Var(5i,;) = T (I + \Il,jB—lxplj) U+ (Y)TeT, (1 + \If,jB—quzj) e

—2uT (140 BT )) 0P
-1
= (U = W) (1 + \I]*J’B_I\I]Ij) () —W_j7").
We establish (33) by applying condition (A2) and the following inequality
)\min(I + \IlijB_llIle) >1+ C)\g(\ll,]%

for some positive constant C' > 0.

C4. Proof of Lemma 2. The proof of this lemma is similar to Lemma 1 in terms of
controlling ||b]|2. We start with the exact expression of b
b=Y ' UTop= (S +TTV) 1 UTe,

By apply the Woodbury matrix inverse formula, we have

=307 (I+ Us,1uT) g,
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1/2

We define D, = WX "/~ € R?*P and hence we have

b=x,">DL(1+ DpDIL) ‘¢,

and
(133) bj = ()T, ¥T(1+ DEDL)'¢.
Hence, we control ||b]|2 as
)\I(DE) Va(logp)t/4
blla < /Cp max ———5—— < VIV R

where the last inequality follows from the fact ¢ )\2( ) < )\2(D g) <Ch )\2( ) and the condi-
tion (A2). Similarly, we apply condition (A2) and control |b | as

q\/log
bi| < ||V (QE).illo——s—— .
1l < 1(2) sl 1912 S S
It follows from Woodbury matrix inverse formula that
(134) IS JUT = 0TS (L, + S oT) !

and hence
0l —02=¢T (I, - IS TUT) o= ¢T(I, + U1 UT) 1o
We establish (35) by applying condition (A2) and the following inequality
Amin(I+ USZUT) > 1+ CAZ(D),
for some positive constant C' > 0.

C.5. Proof of Proposition 4. Define W € RP*P as a diagonal matrix with diagonal
entries as Wy, = |[PYWX.,||la/+/n for 1 <1 < p. For the vector a € RP~!, we define the

weighted ¢1 norm ||al||1., = NPOX il a;| = ||(W_;._;)al|1. Define the event
g ; £ N ;

(4)
(135) Ap = c§M§0M for1<i<pyp,
4D

for some positive constants C' > 0 and ¢ > 0. On the event .4, we have

(136) cllally <llallw < CM|la]:.

We now show that P(Ag) > 1 — p~¢ — exp(—cn), for some positive constant ¢ > 0. By the
construction of PU), we have

IPYX il _ [1X.allo
NV
Following from the fact that X ; is of sub-Gaussian norm M, we apply the Corollary 5.17 in
[57] and establish that, with probability larger than 1 — p~¢ — exp(—cn),

X

\/ﬁ S/ Var(Xq,)(14+ M+/logp/n) S M,

where the last inequality follows from the definition of sub-Gaussian norm and M +/log p/n <
C for some positive constant C' > 0. It follows from condition (A4) that
PV

2
138 min 7> T
(138) ni NG >/

(137)
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Recall the definitions
n; = (7717]', - ,’17n7j)T S Rn, Vi = (I/Lj, ceey I/mj)T eR"” and (5]‘ =MN; —Vj

In the following, we shall choose the tuning parameter A\g such that
1 ; _
Ao > HEUJT(P(”VX—j(W—j,—j) Hlso-

Since v; j = E; j — (yvF)TE; _; is sub-Gaussian and independent of X; _;, we apply Proposi-
tion 5.10 in [57] and the maximum inequality to establish

1 , _ . >
(139) P(HHV}(PU))?X_j(W_]-,_j) 1H002A00j\/10gp/n>§6-p1 (Ao/C1)

for some positive constants Ag > 0 and ¢ > 0. We then control || £6T(PW)2X_;(W_; ;)|
by the inequality

1 .
10T POPX (W) oo < =15

and the upper bound for 1E||§; |13 in (33). As a consequence, we have

1 , 1 lo
ZsT(PUN2x . R TS qlogp < -1/2
P (Hnéj (PV) X j(W_j—j) oo = T+c\l 1+ /\g(‘l’—j) < (logp)

for any positive constant ¢ > 0. Together with (139), we then choose

logp 1 qlogp
= Ayo; d \;>(1 A
Ao = Aogj\[ == T+, 5 2 (L4 ),
and have

1 . _ _
(140) P <\nn;(7><”>2X—j<W—j,—j) Yoo < Ao> >1—C(logp)'/?,

for some positive constant C' > 0.
By the definition of the estimator 7, we have the following basic inequality,

1 , ~ ~ 1 :
(141) o [PV(X; = X )3+ ATl < 5PV (X = X9 ) [+ A1l
By decomposing X; — X_7=X_jv4 +n; + X_; (vF —7), we simplify (141) as

i R R
%HP(J)X—J' (V7 =) 113 + X1l 10 < X317 10
(142)

1 ; ~ 1 ; T (i ~
— 577}(7’(”)2)(7]' (7E ~7) - - ('p(J)XijfyA) P(])X,j (7E ~7).
Regarding the right hand side of the above inequality, we apply (140) and establish that, with
probability larger than 1 — C(logp) /2 for some positive constant C' > 0,
1 ; _ ~
'nU}(P(]))QX—j (C) <||* TPDVX (W) Moo Wi (VF = )l

<ollv? = All1,w-
Additionally, we have

1 . T .
- <7D(])X_ijA> ’P(])X_] ( )

n

POX_; (vF =7) ||a.

PU) X_jy

<H\f l2 H\f
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Then we further simply (142) as
1 ; ~ ~ ~
%HP(”X—J' (V7 =) 13 + X170 < Al 0 + Aollv? = Fll
1 ; 1 ; ~
+ 1 =POX 7 ol =P X (v =) Il

Let 7; denote the support of v¥. By the fact that H’y% 1w = 771

Lo < I =7 110 and

37 110 = v — 37+ l1,w, then we establish
1 . =R ~
5 IPOX_; (47 =3) 15+ (O = 20 I =37
(143) 1 1
< O +20) N7 = A7 s + I Z=PO Xy all Z=PO X5 (77 = 3) [

The following analysis is based on (143) and divided into two cases depending on the domi-
nating term on the right hand side of (143).
Case 1: We consider

~ 1 . 1 ) R
3 +20) 07 =Tl = | =P Xy ol =P X (77 =5) I

and then simplify (143) as

1 - - ~ ~
(144) [PDX_ (vF =) 13+ = 20) 77 =37 1w <20 + 20) |77, =37 10
It follows from (144) that

- A+ Ao ~
7 =7l < 2210 — e
7 — N0

By the choices of A; and \g, on the event Ay, we establish
1 <CM % =37 |1,

for some positive constant C' > 0. By the restricted eigenvalue condition (22), we have

V7 = Ay

1 j E_S\12~< T* I E =~ |2
%IIP(”Xﬁ (" =AMz = S 7 =7l
Together with (144) and (136), we have
T ~ ~
%HV% —3715 <2+ 20) W7 =37 1w
<20M (5 +Xo) |04 — 37 1
< 20M\/[T;l (% + 20) INF, = A7 l2.
which leads to
~ M - M
IV =Anlle £ /1T Oy +20) and |98 =37 S 1T + o).
* *
On the event 4, the above inequality implies that

(145)
2

M

E ~ E ~

Lw S g = A7 e S Mllvr, =37lle S —— 1751 (A + Ao).-
*

e =7 lh S v =37
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Together with (144), (145) implies that

R ~ M?
(146) 2 IPYX5 (v =) I3 —IT51 (A + 20)*.

*

We apply the restricted eigenvalue condition (22) again to establish

(147) 177 =All2 S My/ITi (A + Xo) -
Case 2: We consider

R 1 ) 1 ; ~
(A +20) 7% =37 hw < Hﬁp(j)X—j’YA’hH7P(])X—j (V" =) ll2,

vn

and then simplify (143) as

1 ~ 5
5 IPYX (77 =3) 134 () = Xo) Infe =7

1w

1 . 1 , ~
< I—=PPX 7 el —=PP X (47 =) I
Then we derive
1 . - 1 .

(148) ﬁHP(J)X_j (V=)< H%PU)X-M‘H%

_ IAPDX_ 7413
149 B Ay <
149) F = Al S 72

Then, on the event Ay, we have

IEPOX S
D VS W

and 7 ~ 7

IzPOX_ 413 | 1IEPYX_ 713

)\j + Ao )‘j - '
Finally, we establish (36) by combining (145) and (149); establish (37) by combining (147)
and (150); establish (38) by combining (146) and (148);

(150) [Iv* =Fll2 < 17" =Alh S 17" = Al1w S

C.6. Proof of Proposition 5. The proof of Proposition 5 is similar to the proof of Propo-
sition 4 in Section C.5. In the following, we prove Proposition 5 and mainly highlight its
difference from the proof of Proposition 4 in Section C.5.

Define W € RP*P as a diagonal matrix with diagonal entries as ﬁ;l,l =||QX.|l2/+/n for

1 <1 < p.With a slight abuse of notation, for a € R?, we define ||a||1,w = 1, wmﬂ.

n
Define the event

Ar = {cg 9Xuall:  cipy for1 < §p},
Vn
for some positive constants C' > ¢ > 0. On the event .41, we have (136). Similar to the control
of Ay defined in (135), we can show that P(4;) > 1 — p~¢ — exp(—cn) for some positive
constant ¢ > 0.
The main part of the proof is to calculate the tuning parameter A such that

1 —
A> (140)|—€TQ*XW o
n

for a small positive constant ¢ > 0. Note that e = e + A with A; = TH; . — bTX, .. Since
e; is independent of X ., we apply Proposition 5.10 in [57] and the maximum inequality to
establish

1 Irr 2
(151) P <HneTQ2XW_1Hoo > Ago, /logp/n> <e .p_C(AO/Cl) ,
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for some positive constants ¢ > 0 and Ay > 0. We then control the other part || %AT Q2XW-1 || oo
by the inequality

1 —~ 1
ZATO’XW | < —||A
Hn Q | _\/ﬁll 2

and the upper bound for LE||A||3 in (47). As a consequence, we have

1 —~_ 1 qlogp _
152 P(=ATQ*XW Y| > < (1 1/2

for any positive constant ¢ > 0. We then choose

logp qlogp )
A> Ao, th A=(1 Ap.
> Aoey/ " + T A2(0) wi (1+¢)Ap

We combine (151) and (152) and establish that

1
(153) P ((1 + co>||5eTQ2XW—1Hoo < A) >1—C(logp) /2 —p~¢,

for some positive constant C' > 0.
By the definition of 37", we establish the basic inequality in a similar fashion to (141)
1 ~ ~ 1
(154) 5 100 = XB™ )5+ MB™ 1,0 < - 1Q(Y = XB) [l + AllA
We can apply the similar argument from (141) to (150) by replacing PU), X s X5, 7, ~E,
'yA with Q,Y, X, Bimt, B, b, respectively. We replace the tuning parameters \; and Ao by A

and ﬁ)\, respectively. Then we establish Proposition 5.

law-

C.7. Proof of Lemma 3. We introduce the following lemma about the concentration of
quadratic forms, which is Theorem 1.1 in [52].

LEMMA 11. (Hanson-Wright inequality) Let £ € R™ be a random vector with independent
sub-Gaussian components &; with zero mean and sub-Gaussian norm K. Let A be an n X n
matrix. Then for every t > 0,

. t2 t
(155) P (|¢TAE —EETAL > 1) < 2exp {_Cmm <K4HAH%’ K2||A||2>] ‘

For the high-dimensional setting where p/n — ¢* € (0,00], we have m < n for m =
min{n,p — 1}. We also note Tr[(P\?))!] < m for | = 2,4,8.

C.7.1. Proof of (50). We decompose (P Z;)TPU)X; as
1 ) ) 1 . . 1 . )
ﬁ(p(J)Zj)Tp(J)Xj — ﬁ(p(J)nj)Tp(J)nj + E(P(J)Zj)TP(j)ij’y

(156) 1

n
where 1; = (11,5,...,1n,;)T € R™.
In the following, we control the right hand side of (156) term by term. Since n; = v; + 4,
we have

, R . 1 . A
(PYX (3 —4"))TPWn; + —(POX_jy ) TPV,

1 . . 1 . 2 ) 1 )
f(’p(J)nj)TP(J)nj — HV]T(73(J))2Vj + EV]T(p(J))%j + 55}'(7)(]))2(%'

n
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By applying (155) with A = (P1))2, then with probability larger than 1 — 2 exp(—ct?) for
0<t<STr[(PU)Y] <n,

t' <tf

~

(157)

] (PY)2u; — T [(PY))?] :

Since

5;(7;@))25],’ <||6;||3, we apply the upper bound (33) for 2E||6;||3 and the Markov
inequality to establish

1 qlogp 1
158 P(=]6;]2> ————) <1 2,
(159 (1152 5t ) < o

Hence, we have, with probability larger than 1 — 2exp(—ct?) — (logp) /2,

2 1 : 1 A
<o/ Loz, Larpos,

ZyT (P2 5
2
< (Tr[<7><f>>2]"’ﬂ+0tm> o
n n

n J
L+ A2(V_;)’

for some positive constant C' > 0. Combined with (157) and (158), we apply the fact that
Tr[(PU))2] < n and establish that, with probability larger than 1 — 2exp(—ct?) — (logp)~1/2
for 0 <t <n,

< Vm qlogp

159 .
(159) ST T Trzw))

L 1ip()2 ()2 o]
—n;j (P )™ — Te[(P )]-g

By the KKT condition of (9), we establish

IPDX |2
(7’(3) DTPIX | < vl H*( Z)TPYX il < As jmax =7,

NG

where \; is defined in (39). We control the right hand side as

(Il 4 v 1) Ag < Vsl Ellzdg + Vel llzAs.

On the event A defined in (135), we obtain
(160)
1

LPOZYTPOX | < M- (Va2 + VB e

logp  gplogp +/a(logp)'/*
<M. E| ). p . .

where the last bound follows from the definition of \; in (39) and the upper bound for ||y ||

in (32). We apply Holder’s inequality and establish
(161)
1

. . . N 1 . _
E(P(J)X—j(v—vE))TP(J)"?j S\|W—j,—j(7—VE)HlHgn}(P(J))?X—j(W—j,—j) Hloo

~ J

M2 s IPOX M
n

< M? ) q/1ogp
J
-
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where the second inequality follows from (36) and (140) and the last inequality follows from
(40). Since v; is independent of X_;, we show that %(P(] )X _ i) TPUWy; has mean zero
and variance

(162)

2 Ajl2

T Ayt pyaxt A< 2 Ly SonayT < P\ . _avlogp
n2(7 X (PEV XIS n HnX_](P )X_jHQNmaX{l’n} nAZ(V_;)’

where the last inequality follows from the upper bound for ||y |2 in (32) together with the
property (P1). Then with probability larger than 1 — t%,

t p\ 4q(logp)'/?
S % . \/max{l,n} . 7)\2(\11_]) .

—-1/2
)

1 4 .
(163) ‘n(P(J)X_jf}/A)T’P(J)yj

Note that, with probability larger than 1 — (logp)

1 A . 1 .
L (POX_ TP | < | (PO RX_ s

< { p} qvlogp qlogp
Sy/maxql, = —= . 3
n n)\q(\ILj) 1+)\q(\I/,j)

(164)

where the last inequality follows from (162) and (158).

By (156), we combine the fact that Tr[(P7))?] - % is of a constant order and the upper
bounds (159), (160), (161), (163) and (164). We establish (50) under the conditions s/\?M2 —
0 and

ap
Ag(¥—j) > max {(1 + M) [ =(ogp)** g1+ M)p1/4(10gp)3/8} :
Note that the above conditions are implied by (19) and s < n/[M?log p).

C.7.2. Proofof (51). Note that
1 | 1 | | R
~ZJ(PU)'Zj = —nf (PO + 2] (PUYIX 5 (77 =7 +47)

(165) )
+ EH(P(”)QX—J'(VE 7+

By applying (155) with A = (P))4, then with probability larger than 1 — 2 exp(—ct?) for
0<t<Tr[(PYV)S] <n,

lyT(p(J’))%jj — Te[(PU)YY] -

n J

SJt\/Tlf[(P(j))g] < Vm

~

By a similar argument as in (159), we establish that, with probability larger than 1 —
2exp(—ct?) — (logp) /2 for 0 <t <n,

< Vm o qlogp
~ n 1+)\3(\I/,J)

1 - - 032-
(166) |n77}(7’(”) nj = T((PU)]- -2

By a similar argument as (161), we have
1 . - M? q/1ogp
PN (5 -] 2o L

p
167 ; . 1,=¢.
(167) N T ) max {1, 2}
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In addition, %I/JT (P(j ))4X _j’yA has mean zero and variance
o7 A D)PXT 1< 115, 1 ()8 3T
S (ATX(PD)XT SR X(PU)EXT o,

and hence with probability larger than 1 — 5 for any ¢ > 0,

(168)
1 < t? H2\/ Ja py  qvlogp
' XT |, < 1. 2L, 9vVosP
I X sty fmax {1, 7} nA2(V_;)’

5VJ(P(j))4X—j7

where the last inequality follows from the upper bound for ||y |2 in (32) together with the
property (P1). Note that, with probability larger than 1 — (log p)~ /2,

1 . 1 i
ST POyt < - (POY Xy a5

P q/logp qlogp
<y /max< 1, =5 - :
n n)\g(‘li_j) 1+)\g(\11_])

(169)

where the last inequality follows from (162) and (158).

Note that
1. R 1o
EII(P“))QX#(V —vF i< EH’P(J)X*J'('Y —vF — )3
1 1
S LPOx G- E )+ LPOx_ 3,

By applying (38) and (40), we establish that, with probability larger than 1 — e - p! ~¢(4o/ G
exp(—cn) — (log p)~1/? for some positive constant ¢ > 0,

(170) 7”( DX _ (-~ A)II%(Z\/EAﬁ\/maX{l’i} nq)\;/(k)?j))

By (165), we combine the fact that Tr[(P7))?] - %? is of a constant order and the upper
bounds (166), (167), (168), (169) and (170). We establish (51) under the condition

A (T _5) > /g(logp)/* max { \/g, (10gp)1/4} and s)\gMQ — 0.
Note that the above condition is implied by (19) and s < n/[M?log p].

C.7.3. Proofof (52). Note that
(PO Z,)TPUIX_(8-; - Binit)
VR 21 POz

It follows from Holder’s inequality and also the KKT condition of (9) that

1L (POZ)TPOX (55— B
VV (PO Z;)TPU)X; -

|Bg| =

1 j j Dini Dini 1 j i
S(PUZYTPOX_ (85— B0 < 18- = Bl (PO Z) T PUX o

X.
<Aj maxiup il

Dinit
oo R 3 -
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By the definition of the event Ay in (135) and the upper bound for ||B””t — S|y in (41) and
(44), with probability larger than 1 — e - p!=<(4/C)* _ exp(—cn) — (logp)~'/2 for some
positive constant ¢ > 0,

1 . A ~ M? VIogp
(PO zNTpU) x . . ginity| < Aj qvlogp
n(P Zj) TPV X_;(B—; ) NM( A 1422w )>

Together with (51), we establish Bg 2 0 under the condition
(171) A (T) > [gM]Y2(nlogp)Y* and kA AM]? — 0.

Note that the above condition is implied by (19) and k < v/n/[M?log p].
Now we control the other bias component

1 (PYDZ)yTPOX ;b ; 1

b, ’(P(j)Zj)TP(j)X—jbfj‘Jr 1,
WV (POZ)POx, T )

By = \
\/Ug - ZT(PW)iZ; VV

We investigate 1 (P Z;)TPWX_;b_;:

1 1 . . 1
—(pYWz Z;)T Pl )X_Jb_] — —(P(])Vj)TP(j)X_jb_j + -

n

(’P(j)éj)TP(j)X_jb_j
(172) 1
+(PUX_F 2" —")TPUX b,

Note that 1 (77(7 Ju;)TPU) X_;b_; has mean zero and variance

02. A V1
T ()4 xT 1.1 (N4 x T < Py 4vosp
) X S POYXT by <X (POYXT, ol 3 S max {1, ()

where the last inequality follows from the upper bound for ||b_;||2 in (34) together with the
property (P1). Hence with probability larger than 1 — t% for some ¢ > 0,

t max{l B}-q logp
"t (V)

1 A A
(173) 'n(PO)yj)TP(J)ijj <

Note that, with probability larger than 1 — (logp)~%/2,

1
i| < I=(PYPX 1]l 121145112

5\/max{1 n}'q\/@ qlogp

l(’P(J)(S )T'P(J)X b
n

(174)

AZ(D) L+ AW _y)

where the last inequality follows from the upper bound for ||d;||2 in (158), the upper bound
for ||b—;|2 in (34) together with the property (P1). In addition, we note the following two
inequalities

1

. . 1 .
—PUX_ Y TPIX b | < I allb-s 2l X5 (PDXT o

gmax{l,—}- qvlogp ,
nJ Ag(¥) - Ag(¥—j)

(175)

where the last inequality follows from the upper bound for ||y||2 in (32), the upper bound for
|b—;]|2 in (34) together with the property (P1).
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Note that
1 , -~ E 1 ;
\nxpﬁtxﬂ«v—v POX oy < —=lPDXE =)ol =P X ol
Furthermore, we apply the upper bound (38) and establish that, with probability larger than
1—e-p'=c(A/C)* _exp(—cn) — (logp)~'/? for some positive constant ¢ > 0,

1 ; ~
*(P(J)X—j (- ’YE))TP( )X—]b—J

n

M PUX_ 44
(176) s<u¢wrﬂ'¢gm I<=POX o e

< (Mo s 2y 02 i 2y

where the last inequality follows from the upper bound for ||| in (32), the upper bound for
|b—;]|2 in (34) together with the property (P1).

By (32), (50) and (51), we have 121 5 0 if /L5880 — 0.

We now combine the decomposition (172) and the upper bounds (173), (174), (175) and

(176). Together with (50) and (51), we establish B, 2, 0 under the condition

Ag(¥) > Ag(W_j) > Va(logp)t/* max { \/g,nl/‘l} and /s\;M — 0.
Note that the above condition is implied by (19) and s < n/[M?logp].

C.8. Proof of Lemma 4. We first control the lower bound of A\,(¥) and the argument
for Ay (¥ _;) is similar. Note that A2() is the smallest eigenvalue of W WT =%~ | T,
Since W.; € R? for 1 < j < p are i.i.d. sub-Gaussian random vectors, it follows from (5.26) in
[57], with probability larger than 1 — p—¢,

12 + 1o
”f Z\IJ‘J\IJTI — Z\IJ||2 < C)\max(z\lf) w’
P 7 b
C

for some positive constants ¢, C' > 0. This gives us that, with probability larger than 1 — p~¢,

p
+lo
=1

Similarly, we establish that, with probability larger than 1 — p~¢,

(178) A2(V_j)= mmZ\If ) )(Amin(zw—Amax(zq/),/‘”bgp)
p
I#j

In the following, we control ¥a for a € R? by noting that E||Wal|3 = Tr(Zy)||al/3. Hence,
with probability larger than 1 — t2, we have

(179) 1Wall3 < #Te(Sw)all3 < *gAmax (Sw) [lall3.
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By taking a € R? as ((QE)l,ja ey (QE)]‘_L]‘,O, (QE)j—i-l,j; ey (QE)pJ‘), € and (QE)J‘7., we
establish that with probability larger than 1 — t%,

(180) 10 _5(28)—jjll2 S tv/ayv/ Amax(Zw) () ;.4
(181) ”\IJJHQ St\/a\/ )‘max(z‘lf)

(182) H\I/(QE),] 2 S t\/Z]\/ )\max(E\I!)||(QE),J|
The lemma follows from a combination of (177), (178), (180), (181) and (182).

2

2

C.9. Proof of Lemma 5. The proof is a generalization of that of Lemma 4 in Section
C.8. Note that )\g(\ll) is the smallest eigenvalue of $OT =37 ¥ ;U7 and > ], V., 0T —
Zle A \11.71\112 is a positive definite matrix. By the same argument for (177), we have

as3) A2 > (3 000T) 2 1AL (in (S) = A (Sw) Va/14])

leA

Similarly, we have
(184) N -5) 2 1A (Min(0) = Ao Z0) Va/p)

We establish (19) by the condition (55) on the set cardinality | A|.
Similarly to (179), we establish that, with probability larger than 1 — t%,

1%all3 < t*qgmax{Amax(Sw), C1}lal3.

Then we can establish (180), (181) and (182) by replacing 1/ Amax (2w) with \/maX{)\maX(E\p), C1}.
Combined with (183) and (184), we establish the lemma.

APPENDIX D: ADDITIONAL SIMULATIONS

We present here some additional simulations to the ones presented in the Section 5.1. We
use the same simulation setup where we further vary certain aspects of the data generating
distribution or we vary the tuning parameters of the proposed Doubly Debiased Lasso method.

No confounding - Toeplitz and Equicorrelation covariance. Here we explore further the
scenarios where there is no confounding at all, i.e. ¢ = 0, similarly as in the bottom part
of Figure 7, but with different covariance structure of X = E. We fix n = 300,p = 1,000,
and take the covariance matrix X to be either a Toeplitz matrix, with (Xg); ; = k=3l for
k € [0,1), or we take it to be equicorrelation matrix where (Xg); j =+ € [0,1) when i # j
and 1 otherwise. In both cases, as the correlation parameter « approaches 1, the singular values
become more spiked and the predictors become more correlated. The results can be seen in
Figure Al. We see that Doubly Debiased Lasso seems to have much smaller bias | Bg| and thus
better coverage even in the case when ¢ = 0, because trimming large singular values reduces
the correlations between the predictors. This difference in bias and the coverage is even
more clearly pronounced for the equicorrelation covariance structure, since for the Toeplitz
covariance structure Cor(X;, X;) decays as |i — j| gets bigger, whereas for equicorrelation
case it is constant and equal to k.



bias

bias

DOUBLY DEBIASED LASSO 65

0.44

A AN
Vv
5 —
0.4+ = 0.941 s> — ~
503, o — T \A
o & V\
> © \
] © \
o© [ \
SIzzziIiiEEss=e—al - o |
02, TTTTTTeeRiliiioe- 502 8 0.92 !
- 8 5
©
o
n
01 0.90.
0
0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1
K K K
0.41 \
C \
2 2 0.8 \
o &
5 0.3 I
g g
kel
1 = S o6
TCJ 0.2 o
I ©
;8
[%]
--------------------------------- 58 0.1 0.4
o
0 0.25 0.50 075 1 0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1
K K K

FI1G A 1. (No confounding - Toeplitz and Equicorrelation covariance) Dependence of the (scaled) absolute bias

terms | Bg| and | By| (left), standard deviation v1/2 (middle) and the coverage of the 95% confidence interval
(right) on the correlation parameter k, while keeping p = 1,000,n = 300, q = 0 fixed. In the plots on the left,
|Bg| and |By| are denoted by a dashed and a solid line, respectively, but By, = 0 since we zero confounders

q = 0. Top row corresponds to the Toeplitz covariance structure (X E)z', = wli=d ‘, whereas for the bottom row
we have equicorrelation covariance matrix where the off-diagonal elements equal k. Blue color corresponds to the
Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds also to the
Debiased Lasso estimator, but with the same Bm” as our proposed method. Note that the last two methods have
almost indistinguishable V.

Non-Gaussian distribution. The Assumption (A3) in Section 4 requires that the noise term
vij=F;;— ElT _ jvE is is independent of E; _;. This condition will automatically hold if
E; . is multivariate Gaussian or £; . has independent entries. We now test the robustness of
Doubly Debiased Lasso method when this assumption is violated. In order to examine that,
we repeat the simulation setting displayed in Figure 3, where n = 500 and p varies from 1 to
2,000. We change the distribution as follows: Let P be some real distribution with zero mean
and unit variance. The entries of the matrix of the confounders H are generated i.i.d. from P.

Furthermore, the unconfounded part of the predictors E is generated as Z Y ® where Z is a
n X p matrix with i.i.d. entries coming from the distribution P and > is a Toeplitz matrix
with (Xg); ; = k=3l for k= 0.7. Finally, the noise variables e; used for generating Y (see
Equation 2) are also generated from P. The results can be seen in Figure A2. We take P to be
the following distributions: standardized chi-squared with 1 degree of freedom, standardized
t-distribution with 5 degrees of freedom and standardized Bin(16, 0.5). For comparisons of
the performance, we also include N (0, 1) distribution, but one needs to keep in mind that the
obtained plot differs from the one in Figure 3 because of different correlation structure of F.
We can see that there is very little change in the performance of the proposed estimator, thus
showing that Doubly Debiased Lasso can be used for a wide range of models.

Comparison to PCA adjustment. Here we investigate how the choice of the spectral transfor-
mation can affect the performance of the Doubly Debiased Lasso estimator. We focus on the
PCA adjustment which maps first ¢ singular values to 0, for some tuning parameter ¢, while
keeping the remaining singular values unchanged. This transformation is used frequently in
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FIG A2. (Non-Gaussian distribution) Dependence of the (scaled) absolute bias terms | Bg| and | By| (left), standard

deviation V1/2 (middle) and the coverage of the 95% confidence interval (right) on the number of predictors
p, while keeping n =500, ¢ = 3 fixed. On the left side, | Bg| and |By| are denoted by a dashed and a solid line,
respectively. We change the distribution of H, E/, e in (1) as described in the text. Each row in the plot corresponds
to a different distribution P. We set ¥ ; to have Toeplitz structure with parameter k = 0.7. Blue color corresponds
to the Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds also
to the Debiased Lasso estimator, but with the same Ezmt as our proposed method. Note that the last two methods
have almost indistinguishable | By| and V.
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the literature because it arises by regressing out the top ¢ principal components from every
predictor.

We fix n = 300,p = 1,000,¢ = 5 and vary the parameter §. We compare the estimator
using the PCA adjustment for both P) and Q with the estimator using the Trim transform
with the median rule for both P) and Q. Finally, we also consider the estimator using the
Trim transform for Q and PCA adjustment for P9, in order to separate the effects of changing
the spectral transformation for the initial estimator Bm“ and the overall estimator construction.
The results can be seen in Figure A3.

We see that the performance is very sensitive to the choice of the tuning parameter 4. On
one hand, if § < ¢, we do not manage to remove enough of the confounding bias Bj, which has
as a consequence that there is certain undercoverage of the confidence intervals. On the other
hand, if ¢ > ¢, the bias Bj becomes very small, but the variance of our estimator iEcreases
slowly as ¢ grows. Also, removing too many principal components when computing 37 can
remove too much signal, resulting in the higher bias Bg. Trim transform has an advantage
that we do not need to estimate the number of latent confounders ¢ from the data, which
might be a quite difficult task. This is done by trimming many principal components, but
not removing them completely. However, this can result in a small increase of the estimator
variance compared to the PCA adjustment with the optimal tuning § = q.
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FIG A3. (Comparison to PCA adjustment) Dependence of the (scaled) absolute bias terms |Bg| and | By| (left),

standard deviation V1/? (middle) and the coverage of the 95% confidence interval (right) on the correlation
parameter k, while keeping p =1,000,n = 300,q = 5 fixed. In the left plot, |Bg| and |By| are denoted by a
dashed and a solid line, respectively. We vary the parameter § of the PCA adjustment, which maps the first § to

zero. Red color corresponds to the Doubly Debiased Lasso using Trim transform for both P(j ) and Q, blue color

represents the Doubly Debiased Lasso using PCA adjustment for both P(j ) and Q and green color corresponds to
the Doubly Debiased Lasso estimator using the same default /Bzmt with Q being the median Trim transform, but

uses PCA adjustment for P(j ). Note that the last two methods have almost indistinguishable V.

Weak confounding. Here, we explore how the performance of our estimator depends on the
strength of the confounding, i.e. how H affects X. In Figure 5, we have already explored
how the performance of our method depends on the number of affected predictors by each
confounder. Here we allow all predictors to be affected, but with decaying strength. This we
achieve by generating the entries of the loading matrix ¥ as ¥;; ~ N(0,1/0;(j)®), where
for each of the ¢ rows we take a random permutation o; : {1,...,p} — {1,...,p}, and
a > 1 is a tuning parameter describing the decay of the loading coefficients. The values
n =300,p = 1,000 and g = 3 are kept fixed. The results can be seen in the Figure A4. We
see that when a is close to 1 and the confounding is strong that our proposed estimator is
much better that the standard Debiased Lasso estimator. On the other hand, when « is larger,
meaning that the confounding gets much weaker, the difference in performance decreases, but
Doubly Debiased Lasso still has smaller bias and thus better coverage.
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FI1G A4. (Weak confounding) Dependence of the (scaled) absolute bias terms |Bﬂ| and |By| (left), standard

deviation Vl/ 2 (middle) and the coverage of the 95% confidence interval (right) on the loadings decay parameter
a, while keeping p=1,000,n = 300, g = 3 fixed. In the left plot, Bﬁ| and | By| are denoted by a dashed and a
solid line, respectively. Blue color corresponds to the Doubly Debiased Lasso, red color represents the standard
Debiased Lasso and green color corresponds also to the Debiased Lasso estimator, but with the same Bmzt as our
proposed method. Note that the last two methods have almost indistinguishable V.




